Find this article useful?
Support us as a patron of our Palm Fruit™
Contents
- Introduction
- The long-standing debate
- Differences between synthetic, “natural”, and plant-based vitamins
- Animal research
- Why are synthetic/isolated vitamers harmful?
- The Supplement Facts panel: distinguish harmful from healthy
- Best practices for obtaining the health benefits from vitamins
- The top recommended products
- References
Introduction
This article will focus on provitamin A (carotenoids) and vitamin E (tocochromanols), and reveal the critical differences between synthetic, “natural”, and plant-based forms.
In this article, you will learn these 3 valuable lessons:
- Which types of vitamins increase the risk of cancer, stroke, and heart disease: Learn why synthetic, or even so-called “natural” vitamin supplements, can be a threat to your health.
- The critical importance of mixed vitamers: Learn how a broad-spectrum of vitamers is essential for health and which ones you need the most – carotenoids and tocotrienols.
- Easy tips on interpreting the Supplement Facts panel: Learn how to spot the harmful vitamins in both food and supplements.
Provitamin A and vitamin E are not single substances but are in fact groups of vitamers. (1) Most conventional vitamin supplements only contain a single vitamer, while true plant-extracted supplements retain a broad-spectrum of vitamers. (Figure 1) Broad spectrum vitamers function as harmonious antioxidants, neutralizing the negative effects of free radicals. (2–6) However, once isolated from their natural relatives, single vitamers misbehave as hazardous pro-oxidants. (7) This article will examine the profound implications of this.
Figure 1. Most “natural” vitamin supplements are chemically stripped down to a single vitamer, which are more closely related to synthetic vitamins than true plant-based vitamins.
Before moving on, let’s review some important terms:
Vitamin Definitions |
---|
Vitamer: Individual compound that makes up a family of vitamins. (e.g., alpha-tocopherol is a vitamer of the vitamin E family.) (1) |
Vitamin A: Includes retinoids with biological activity similar to retinol, also known as preformed vitamin A; includes carotenoids (e.g., beta-carotene) that convert to retinoids in the body, also known as provitamin A. (8) In the food supply, there are at least 6 carotenoids (vitamers) with provitamin A activity, and at least 50 other carotenoids with related or supportive functions. (9–11) Note: This article will focus on provitamin A and carotenoids. |
Vitamin E: Includes tocochromanols that have biological activity similar to alpha-tocopherol. (8) In the vitamin E family, there are at least 13 known vitamers, including tocopherols and tocotrienols which are collectively referred to as tocochromanols. (12, 13) |
Synthetic vitamin(s): Created from industrial chemicals; consists of a single isolated vitamer. |
Natural vitamin(s): Term used by the supplement industry for vitamins that match the chemical structure of vitamins found in nature. However, most “natural vitamins” are more closely related to synthetic vitamins than plant-based vitamins due to chemical processing into a single isolated vitamer. (13) |
Plant-based vitamin(s): Extracted from fruits, vegetables, herbs, fungi, and other natural sources; retains the chemical structure and chemical diversity of vitamins and phytonutrients found in nature. |
Antioxidant: Any substance that delays, prevents or removes damage from free radicals, which may slow the progression of aging and disease. (2) Practically all vitamers play a role as an antioxidant, but not all antioxidants are vitamers. (2–6) |
The long-standing debate
For the past century, the belief that plant-based food can be replaced by a short list of chemicals has misguided researchers, physicians, and consumers alike. (14–16)
In 1962, researchers at the Stanford Research Institute attempted to match the natural composition of broccoli to create “synthetic broccoli” with 48 different ingredients including vitamins, minerals, amino acids, cellulose, glucose, and a small bit of vegetable oil. (17) Guinea pigs were fed the synthetic broccoli, and then subjected to gamma-radiation to mimic nuclear fallout. In the synthetic broccoli group, 95% of the guinea pigs died after the radiation exposure, while only 10% died in the group of animals fed real vegetables. (17)
As of 2015, at least 265,000 naturally occurring compounds have been identified and indexed. (18) Thousands of new compounds are added to this list each year. It is estimated that a single vegetable, such as broccoli, may contain over 10,000 unique substances, arranged in an infinitely complex matrix. (14, 19) Such a complex composition explains how 1 g of fresh apple, with only 0.057 mg of vitamin C, provides the same antioxidant protection as 15 mg of synthetic vitamin C. (20) Indeed, the superiority of plant-based vitamins comes from greater chemical diversity, not greater chemical quantity.
But if plant-based vitamins are so vastly superior, why have synthetic/isolated vitamins dominated our fortified foods and dietary supplements for the last 100 years?
To answer this question, let’s go back to the beginning of vitamin research.
A brief history of vitamins
In the 1930s, prior to the introduction of synthetic vitamins, research on vitamins was conducted using plant-based extracts. (15) Much of the early animal research on vitamin E utilized wheat germ oil, which contained not only a rich source of alpha-tocopherol, but also other E vitamers and phytonutrients. (21) In 1938, pure synthetic alpha-tocopherol became available to the research community. (1) Over the next several decades, researchers found that the synthetic vitamin E did not produce the same results as the crude plant-based extracts. (15, 21, 22) Some researchers believed that the “active” component had been missed entirely. (15, 21) Dr. Franklin Bicknell, a proponent for plant-based vitamins, believed that the failure of synthetics could be explained by the absence of the “complete complex” contained in the plant extracts. (22) Unfortunately, not all physicians and researchers acknowledged the unique functions and interdependencies among the different vitamers. (15, 21, 22)
Synthetic vitamins are made from industrial chemicals, while plant-based vitamins are extracted from fruits, vegetables, etc. However, In today’s market, most “natural” vitamin supplements are so extensively modified and purified they are essentially the same as synthetic vitamin supplements.
From the 1940s to the 1960s, much of the research on vitamin E focused on finding the most “active” form of vitamin E, so it could be studied independently. (15) The vitamin E family was ranked based on the ability to sustain reproduction in rodents. (23) Once established that alpha-tocopherol had the greatest activity in this bioassay, the other members of the vitamin E family (e.g., tocotrienols) were largely disregarded. (23–25) However, as we will learn in later sections of this article, each vitamer provides unique and symbiotic functions.
Although many early physicians and researchers recognized the superiority of plant-extracted vitamins (e.g., Catalyn®), those who advocated their use in patients were ridiculed by the FDA for prescribing crude, non-standardized treatments. (1, 14, 21, 22, 26–28) In addition, food-extracted vitamins suffered from batch-to-batch variability and a short shelf-life, which made scientific reproducibility difficult for researchers. (21) Eventually, synthetic vitamins became the preferred source due to their consistent potency and widespread availability. (1, 14, 21)
Failure in disease prevention
Throughout the 1980s, many large-scale studies found that populations with high blood levels of carotenoids and tocopherols had a lower risk of cancer, cardiovascular disease, and other chronic diseases. (29–31) Several test-tube and animal studies suggested that beta-carotene and alpha-tocopherol might be the active components for these long-term health benefits. (29, 32–35) The optimism around supplemental vitamins was made clear when Tim Byers et al., with the Center of Disease Control (CDC), made the optimistic statement:
…cancer chemoprevention through supplementation and fortification of the diet with micronutrient antioxidants [vitamins] could become an effective strategy for cancer control before the close of this century.
– Tim Byers
Centers for Disease Control (1992)
By the mid-90s, the first large human clinical trials were published on the effects of synthetic beta-carotene (20 mg/day) and alpha-tocopherol (50 mg/day) on lung cancer and other chronic diseases. (ATBC and CARET) (36, 37) Incidentally, the studies found that beta-carotene supplementation increased the risk of lung cancer and overall mortality, while alpha-tocopherol increased the risk of hemorrhagic stroke. (36, 37) Over the next decade, several more studies on alpha-tocopherol found an increased risk of prostate cancer and all-cause mortality. (38–42)
After two decades of damaging research, the faith in vitamin supplements for disease prevention started to disappear among the research community. In 2015, at the American Association for Cancer Research (AACR) Annual Meeting, Tim Byers retracted from his previous optimism:
We studied thousands of patients for ten years who were taking dietary supplements and placebos… We found that the supplements were actually not beneficial for their health. In fact, some people actually got more cancer while on the vitamins.
– Tim Byers
Colorado Cancer Center (2015)
Unfortunately, journalists, bloggers, and even Tim Byers himself have failed to clarify one key point. The harmful effects from “dietary supplements” and “vitamins” only apply to synthetic and isolated vitamins. (7, 43) As we will learn, “dietary supplements” and “vitamins” cannot be categorically banished. The synthetic and isolated vitamin supplements administered in many publicized human clinical trials differ greatly from the vitamins extracted from fruits and vegetables – as do the health outcomes.
The following sections will highlight those differences.
Differences between synthetic, “natural”, and plant-based vitamins
If single vitamer molecules were examined, we would find that synthetic, “natural”, and plant-based vitamers all share the same molecular structure. (16, 44) This, however, is where the similarity ends. Plant-based vitamin extracts include a diverse mixture of substances; including dozens of closely related vitamers and phytonutrients. (Figure 2) (45–48)
Figure 2: Synthetic and even so-called “natural” vitamins contain single isolated vitamers, while plant-extracted vitamins contain dozens of vitamers and phytonutrients.
As you will see in the following sections, both synthetic and “natural” vitamin supplements consist of single isolated vitamers, and therefore have similar biological effects and health consequences. Because of this similarity, they can be collectively referred to as isolated vitamins, regardless of their synthetic or “natural” origins.
Composition
The compositional differences between synthetic/isolated and plant-based vitamins are compared side-by-side in the tables below.
Synthetic / Isolated Provitamin A | Plant-Based Provitamin A |
---|---|
Common names: beta-carotene, or all-trans-beta-carotene. | Common names: mixed carotenoids, or beta-carotene from [plant name]. |
Description: Synthetic and even “natural” beta-carotene generally contain pure isolated beta-carotene (>98%) with no other vitamers or carotenoids. (16) This form of provitamin A is generally considered harmful. | Description: Plant-based provitamin A retains a broad-spectrum of vitamers (carotenoids) and other phytonutrients. (48) This form of provitamin A is considered healthy and beneficial. An extract of palm fruit (African oil palm) is used as an example below. |
Provitamin A vitamers: all-trans-beta-carotene | Provitamin A vitamers: 9-cis-alpha-carotene 13-cis-alpha-carotene all-trans-alpha-carotene 13-cis-beta-carotene 15-cis-beta-carotene all-trans-beta-carotene gamma-carotene |
Other phytonutrients: none. | Other phytonutrients: d-alpha-tocotrienol d-beta-tocotrienol d-gamma-tocotrienol d-delta-tocotrienol d-alpha-tocopherol d-beta-tocopherol d-gamma-tocopherol d-delta-tocopherol d-alpha-tocomonoenol plastochromanol-8 9-cis-beta-carotene delta-carotene 2-cis-zeta-carotene lycopene poly-cis-lycopene phytoene cis-phytofluene neurosporene alpha-zeacarotene beta-zeacarotene zeaxanthin cryptoxanthin squalane coenzyme-Q10 coenzyme-Q9 beta-sitosterol campesterol stigmasterol and others... |
Dosage and effect on health: See supplemental data sheet | Dosage and effect on health: See supplemental data sheet |
Many of the vitamin E products on the market claim to be natural. However, these products are chemically processed to convert all naturally occurring vitamers into pure alpha-tocopherol. (13, 44) There is no known source in nature that contains alpha-tocopherol without other E vitamers, therefore supplement companies selling isolated alpha-tocopherol as “Natural Vitamin E” are mislabeling their products and liable for a potential lawsuit. (49)
Synthetic / Isolated Vitamin E | “Natural” / Isolated Vitamin E | Plant-Based Vitamin E |
---|---|---|
Common names: dl-alpha-tocopherol, all-rac-alpha-tocopherol, or dl-alpha-tocopheryl esters (acetate, succinate, etc.) | Common names: d-alpha-tocopherol, alpha-tocopherol, or RRR-alpha-tocopherol. | Common names: mixed tocochromanols, mixed tocopherols and tocotrienols, or alpha-tocopherol from [plant name]. |
Description: Synthetic vitamin E contains a mixture of 8 different alpha-tocopherol isomers. (44) However, only the RRR-alpha-tocopherol exists in nature. Therefore, synthetic vitamin E is referred to as a single isolated vitamer. This form of vitamin E is generally considered harmful. | Description: “Natural” vitamin E starts as an extract from soy or sunflower oil and undergoes chemical processing to convert the mixed vitamers into pure alpha-tocopherol. (13, 44) Although the alpha-tocopherol structure is identical to the “natural” form, this type of vitamin E is a single isolated vitamer. This form of vitamin E is generally considered harmful. | Description: True plant-based vitamin E retains at least eight different E vitamers, and dozens of other phytonutrients. (50, 51) This form of vitamin E is considered healthy and beneficial. An extract of palm fruit (African oil palm) is used as an example below. |
Vitamin E vitamers: RRR-alpha-tocopherol RRS-alpha-tocopherol RSR-alpha-tocopherol RSS-alpha-tocopherol SSS-alpha-tocopherol SRS-alpha-tocopherol SSR-alpha-tocopherol SRR-alpha-tocopherol | Vitamin E vitamers: d-alpha-tocopherol | Vitamin E vitamers: d-alpha-tocotrienol d-beta-tocotrienol d-gamma-tocotrienol d-delta-tocotrienol d-alpha-tocopherol d-beta-tocopherol d-gamma-tocopherol d-delta-tocopherol d-alpha-tocomonoenol plastochromanol-8 |
Other phytonutrients: none. | Other phytonutrients: none. | Other phytonutrients: 9-cis-alpha-carotene 13-cis-alpha-carotene all-trans-alpha-carotene 9-cis-beta-carotene 13-cis-beta-carotene 15-cis-beta-carotene all-trans-beta-carotene gamma-carotene delta-carotene 2-cis-zeta-carotene lycopene poly-cis-lycopene phytoene cis-phytofluene neurosporene alpha-zeacarotene beta-zeacarotene zeaxanthin cryptoxanthin squalane coenzyme-Q10 coenzyme-Q9 beta-sitosterol campesterol stigmasterol and others... |
Dosage and effect on health: See supplemental data sheet | Dosage and effect on health: See supplemental data sheet | Dosage and effect on health: See supplemental data sheet |
The effect of these vitamins on health and disease will be discussed next.
Animal research
Provitamin A | isolated vs. broad-spectrum
Animal research has found that broad-spectrum carotenoids (palm fruit extract) are effective at preventing the formation of cancerous intestinal lesions in rats, while the single isolated vitamer beta-carotene is not. (52) Another study found that palm fruit based carotenoids can block UV (e.g. sunlight) related damage more effectively than isolated beta-carotene. (53, 54) One interesting study compared the liver protective effects of plant-based carotenoids and isolated beta-carotene. In this study, the mixed plant-based carotenoids provided greater protection against carbon tetrachloride liver poisoning. (55)
Vitamin E | isolated vs. broad-spectrum
In dogs, plant-based vitamin E (wheat germ oil extract) was compared to isolated alpha-tocopherol in the treatment of neurodegenerative disease. (21) It was found that the wheat germ oil extract reversed the neuromuscular symptoms in 84% of the dogs, while the alpha-tocopherol only improved the condition in 14% of the dogs. (21) Another study in dogs found that broad-spectrum vitamin E (palm fruit extract) protected brain cells against stroke-induced injury, while alpha-tocopherol alone was ineffective. (56, 57) Several studies have shown a protective effect of tocotrienols in rat brain cells against oxidative damage, while alpha-tocopherol alone failed to demonstrate a protective effect. (58–60)
In test-tube studies, broad-spectrum E vitamers from palm fruit extract have strong inhibitory effects on the growth of prostate cancer cells, while alpha-tocopherol alone has no effect. (61, 62) Similar results were found in human breast cancer cells, where mixed tocochromanols suppressed the growth of the cancer cells, whereas alpha-tocopherol alone had no effect. (63–65) Interestingly, the E vitamer gamma-tocopherol possesses anti-cancer activities, which are inhibited by excessive alpha-tocopherol. (66) This suggests that different E vitamers not only have synergistic effects, but may also act to counterbalance each other.
In the microscopic roundworm (C. elegans), palm fruit based tocochromanols provided protection against UV irradiation and prevented premature death, while isolated alpha-tocopherol provided no protection. (67)
Human research
Provitamin A | isolated vs. broad-spectrum
Supplementation with synthetic beta-carotene has failed to protect against disease, and has instead produced a harmful effect in the majority of studies. (36, 37, 68–73) Yet over 30 observational studies have shown that higher intakes of carotenoids from fruits, vegetables, and other plant foods are strongly associated with a lower risk of cardiovascular disease, cancer, and chronic disease. (12, 74–81)
Note: A side-by-side comparison of these studies can be found in the supplemental data sheet.
Vitamin E | isolated vs. broad-spectrum
Supplementation with isolated alpha-tocopherol has failed to show a benefit, and in several studies, has actually increased the risk of prostate cancer, cardiovascular disease, and death. (36, 38–42, 82–93) In the major human clinical trials that have used “natural” (isolated) alpha-tocopherol (300-800 IU per day), only one study found a reduced risk of heart attack, two found no benefit, and one found a slightly increased risk of fatal heart attack. (40, 82, 90, 94) Thus, regardless of synthetic or natural origins, pure isolated alpha-tocopherol is generally ineffective or harmful. (36, 39–42, 82, 83, 88–91, 94)
On the other hand, there is a strong correlation between higher plant-based vitamin E intake and lower risk of cardiovascular disease and other chronic diseases. (31, 89) In addition, vitamin E supplementation from plant-based sources has never been associated with an increased risk of chronic disease, and instead, has been associated with beneficial and protective effects. (95–103)
Note: A side-by-side comparison of these studies can be found in the supplemental data sheet.
Beneficial, harmful, or neutral?
Plotting the research findings shows consistent differences between isolated vitamers and broad-spectrum plant-based vitamers. The collection of human research shows that isolated vitamers have generally harmful effects, while broad-spectrum plant-based vitamers have generally beneficial effects. (7, 93, 104) (Figure 3)
Figure 3: Harmful effects are seen from single vitamers, while broad-spectrum mixed vitamers from plant-based vitamins show beneficial effects.
Therefore, the harmful effect from vitamins is a consequence of vitamin isolation. (35, 105, 106) When vitamins are retained with their naturally occurring mixture of vitamers, they maintain the valuable benefits associated with plant-based foods. (52, 53, 55, 95–103)
Why are synthetic/isolated vitamers harmful?
Research has demonstrated that isolated beta-carotene inflicts oxidative damage to DNA similar to smoking. (107) Accumulation of oxidative damage to the chromosome (e.g., DNA) is known to be a primary contributor to cancer. (108) In contrast, human studies have shown that plant-based carotenoids (which includes beta-carotene) can actually repair and reverse oxidative DNA damage, and is associated with a reduced risk of lung cancer. (109, 110) In addition, successful treatment of advanced stage lung cancer has been achieved with the Gerson Therapy, which includes the intake of 10+ glasses of fresh raw carrot juice per day. (111–113) This equates to about 220 mg (450,000 IU) of beta-carotene per day, which is 7 times greater than the dose used in the ATBC and CARET studies. (36, 37, 114) Thus, even massive amounts of beta-carotene are beneficial if taken with other naturally occurring carotenoids.
The increased risk of cardiovascular disease from isolated vitamin E (alpha-tocopherol) can be largely explained by the increased oxidative damage induced by alpha-tocopherol when given in its isolated form. (7, 115, 116) Cardiovascular disease is perpetuated by oxidative damage to LDL cholesterol. (117, 118) When LDL particles become oxidized, they are deposited within the artery wall and eventually transformed into a hard calcified plaque. (117, 118) When the plaque ruptures, it can cause a heart attack or stroke. (117)
Isolated vitamins are not harmful because of the dose, the population, or the pre-existing health conditions. Rather, isolated vitamins are problematic because they are isolated.
But how do isolated vitamers contribute to disease?
Isolated vitamers deplete other vitamers
In the food supply and conventional dietary supplements, beta-carotene or retinyl palmitate are used to boost the vitamin A value, while alpha-tocopherol is used to boost vitamin E value. This selective fortification with a single vitamer from these major vitamin groups creates nutritional gaps and imbalances. (Figure 4)
Figure 4: The relative dominance of the single vitamers which are commonly added to processed foods and vitamin supplements, highlighting deficiency in the other vitamers.
To make matters worse, supplementation with single vitamers can actually deplete related vitamers by ramping up the liver enzymes that accelerate the excretion of the entire family of vitamers. (Table 3) (119–122)
Intake of isolated vitamer | Effect on other vitamers |
---|---|
102 mg of isolated beta-carotene per day in adult men and women. | Decreased serum lycopene by 50% after 3 weeks. (123) |
30 mg of isolated beta-carotene per day in adult men. | Decreased serum lutein by 38% after 6 weeks. (124) |
30 mg of isolated beta-carotene in adult men. | Decreased plasma alpha-tocopherol levels by 40% after 9 months. (125) |
1000 mg of isolated alpha-tocopherol in adults. | Decreased other tocopherols in plasma up to 40% after 8 weeks. (120) |
According to the CDC, only about 0.3% of the U.S. population is deficient in retinol, and less than 1% of the population is deficient in alpha-tocopherol, which technically fills the requirement for vitamin A and vitamin E, respectively. (126–128) However, for lesser known vitamers and phytonutrients, there are severe deficiencies in over 95% of the population. For example, the average intake of alpha-carotene is less than 0.4 mg/day, while research suggests 5 mg/day may be ideal for prevention of chronic disease. (126, 129–133) Similarly, the average daily intake of tocotrienols is less than 3 mg/day. (100, 101, 134–138) Yet, research suggests that the ideal intake is near 100 mg/day for brain and cardiovascular health. (25)
Thus, the modern day population is well covered on the “marker” vitamins which have established Recommended Dietary Allowances (RDAs) but is deficient in the relatively unrecognized carotenoids and tocotrienols.
Isolated vitamers increase oxidative damage
The provitamin A and vitamin E family are some of the most important fat soluble antioxidants obtained from the diet. (108) These antioxidants are stored in nearly all cells and tissues of the body, which neutralize free radicals to prevent oxidative damage to surrounding tissue. (Figure 5) (2)
Figure 5: The vitamer, beta-carotene, acting as an antioxidant by neutralizing a free radical.
As a part of normal functioning, a single cell in the body produces about 1,000 free radicals per second, and perhaps 100 times more than this in a state of oxidative stress when antioxidant defenses become overwhelmed. (2) Oxidative stress leads to oxidative damage inflicted upon lipids, proteins, and DNA. (2) As discussed in earlier sections, excessive oxidative damage contributes to cancer, cardiovascular disease, and other chronic diseases. (2, 108)
Free radicals must pass through a variety of biological compartments (e.g., mitochondria, cell membrane, etc) and travel across immiscible phases (e.g., oil and water) to be cleared from the body. (105, 139–144) Tunneling free radicals through these various phases requires dozens of antioxidants (vitamers and phytonutrients) to work together in a closely integrated network. (5, 106, 139–142) This antioxidant network forms the free radical transfer chain. (Figure 6) (139–142)
Figure 6: Dozens of antioxidants (e.g., vitamers) are required for the transfer and removal of free radicals.
As seen in Figure 6 and Figure 7, coenzyme-Q10, due to its long tail length, grabs free radicals deep within the cell membranes and passes free radicals to the next closest relatives; the carotenoids and tocochromanols. (141, 143–145) A greater variety of antioxidants broadens the “span” of the antioxidant network and helps remove free radicals more efficiently. (146, 147) Indeed, the protection from a single isolated antioxidant (vitamer) is extremely limited. (35, 106, 115, 139, 148) This was highlighted by a study that examined the effects of isolated beta-carotene in human subjects for 4 weeks. (149) The 120 mg/day dose did not provide any additional antioxidant protection than 15 mg/day, suggesting that the antioxidant network was limited by antioxidants other than beta-carotene. (149)
Figure 7: Antioxidants working together to move free radicals through a cell membrane and into the plasma where they can be excreted and eliminated.
One study found that 100 mg/day of isolated beta-carotene for only 3 weeks actually increased oxidative damage in humans. (148)
But how can an antioxidant actually become a pro-oxidant?
For illustration, it’s helpful to compare the free radical transfer chain to a human bucket brigade that bails out trash from a factory. In a human bucket brigade, if ten buckets dumped into a single bucket, it would quickly overfill the single bucket. (Figure 8) Likewise, if people dropped buckets from the top of a 20 ft ladder, trash would spill everywhere. Thus, when an antioxidant significantly exceeds the capacity of neighboring antioxidants, or cannot effectively connect with other antioxidants, it ultimately becomes a damaging pro-oxidant. (Figure 8) (5, 35, 115, 139, 141, 142, 148, 150)
Figure 8: Isolated vitamers eventually dominate and overwhelm other vitamers; becoming damaging pro-oxidants which contribute to cancer and cardiovascular disease.
Naturally, as the variety of antioxidants increases, so does the antioxidant protection. (83, 105, 106, 115) One study found that cholesterol particles (e.g., LDL) are quickly damaged if coenzyme-Q10 becomes depleted, despite being saturated in alpha-tocopherol. (151) However, only one molecule of coenzyme-Q10 (i.e., CoQ-10) was required for every nine molecules of alpha-tocopherol to control oxidative damage. (106, 142) Thus, even trace levels of co-antioxidants (vitamers) can maintain antioxidant protection.
In summary, supplementation with isolated antioxidants (e.g., single vitamers) produces a disconnected, imbalanced, and unstable antioxidant network that increases the risk of cancer, cardiovascular disease, and other chronic diseases. (5, 7, 35, 115, 141, 142)
The Supplement Facts panel: distinguish harmful from healthy
On the Supplement Facts panel, synthetic and isolated vitamins are easily spotted by the listing of a single vitamin compound, especially when no plant or food source for the vitamin is listed. The compound may be found next to the vitamin line, or in the “other ingredients” section. (Figure 9)
Figure 9: Synthetic/isolated vitamins can be identified by looking for a single vitamer without any mention of its origin.
True plant-extracted vitamins can be identified by finding the listing of a specific plant source. For example; “Vitamin A (as beta-carotene from carrot extract)” would qualify as plant-based and would naturally contain a broad-spectrum of other carotenoids. (Figure 10)
Figure 10: The plant source of the vitamin A and vitamin E in these products can be easily identified, indicating that these products contain a broad spectrum of vitamers.
Be warned, many vitamin supplements on the market, especially multivitamins, claim to be from “whole-foods” but a careful analysis of the Supplement Facts often reveals that these products contain synthetic/isolated vitamins in disguise.
How can companies get away with this?
If you see the yeast Saccharomyces cerevisiae (S. cerevisiae) or the bacteria Lactobacillus bulgaricus (L. Bulgaricus) on the Supplement Facts panel for a particular vitamin, this means that synthetic vitamins were incubated with these microbes in a fermentation process. (152) After the microbes are given a few days to absorb the vitamins, the material is dried, and pressed into tablets. Although these “cultured” vitamins may be more bioavailable than purely synthetic vitamins, they do not contain the same broad spectrum of vitamers found in plant-based vitamins.
Best practices for obtaining the health benefits from vitamins
For the greatest health and longevity, follow these best practices:
- Reduce intake of foods and supplements with synthetic / isolated vitamers: This will help prevent and reverse vitamer dominance caused by isolated vitamers.
- Consume fresh fruits, vegetables, herbs, coffee, and tea: This is important for obtaining a full spectrum of water-soluble and fat-soluble vitamers and phytonutrients. (19, 153)
- Consume plant-based supplements: Carotenoids and tocotrienols are lacking in over 95% of the U.S. population, even after consuming 2-3 servings of vegetables daily. (129, 136, 154) Many B- and K-vitamins may also be difficult to obtain in sufficient quantity from common foods. (155, 156) Therefore, it is recommended to supplement with carotenoids, tocotrienols, and a plant-based multivitamin for full spectrum coverage.
The top recommended products
It can be difficult to find genuine “plant-based” vitamin supplements, so I’ve done the research for you. To see the top brands that met my stringent requirements, just enter your name and email below:
We will only send you high-quality content approved by Eric Potratz.
∎
References
- Combs G. 2012. The Vitamins. Elsevier/ Academic Press
- Halliwell B, Gutteridge J. 2007. Free Radicals in Biology and Medicine. OUP Oxford
- Natera J, Massad W, García NA. 2012. The role of vitamin b6 as an antioxidant in the presence of vitamin b2-photogenerated reactive oxygen species. a kinetic and mechanistic study. Photochem. Photobiol. Sci. 11(6):938–45
- Vervoort LM, Ronden JE, Thijssen HH. 1997. The potent antioxidant activity of the vitamin k cycle in microsomal lipid peroxidation. Biochem. Pharmacol. 54(8):871–76
- Sies H, Stahl W. 1995. Vitamins e and c, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62(6 Suppl):1315S–1321S
- Wiseman H. 1993. Vitamin d is a membrane antioxidant. ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326(1-3):285–88
- Poljsak B, Milisav I. 2012. The neglected significance of “antioxidative stress” Oxid. Med. Cell. Longev. 2012:480895
- AIN Committee on Nomenclature. 1986. Generic descriptors and trivial names for vitamins and related compounds. The Journal of Nutrition. 116(1):8–16
- Dela Seña C, Narayanasamy S, Riedl KM, et al. 2013. Substrate specificity of purified recombinant human β-carotene 15,15′-oxygenase (bco1). J. Biol. Chem. 288(52):37094–103
- Britton G, Liaaen-Jensen S, Pfander H. 2004. Carotenoids: Handbook. Birkhäuser Basel
- Khachik F, Beecher GR, Goli MB, et al. 1992. Separation and quantitation of carotenoids in foods. Methods Enzymol. 213:347–59
- Food and Nutrition Board. 2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press
- Tan B. 2005. Appropriate spectrum vitamin e and new perspectives on desmethyl tocopherols and tocotrienols. Janasamkhya
- DeCava JA. 2003. Natural versus synthetic supplements. Whole Food Nutrition Journal, pp. 24–26
- Lee R. 2006. Vitamin News. International Foundation for Nutrition & Health
- Patrick L. 2000. Beta-carotene: the controversy continues. Alternative Medicine Review. 5(6):530–45
- Newell W. 1963. Further studies of the influence of diet on radiosensitivity of guinea pigs, with special reference to broccoli and alfalfa. Journal of Nutrition. 79(3):340–48
- Dictionary of Natural Products.
- Liu RH. 2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr. 78(3 Suppl):517S–520S
- Eberhardt MV, Lee CY, Liu RH. 2000. Antioxidant activity of fresh apples. Nature. 405(6789):903–4
- Levin E. 1945. Vitamin e vs. wheat germ oil. The American Journal of Digestive Diseases. 12(1):20–21
- Bicknell F, Prescott F. 1953. The vitamins in medicine. New York: Grune & Stratton
- Bunyan J, McHale D, Green J, et al. 1961. Biological potencies of ε- and ζ1-tocopherol and 5-methyltocol. Br. J. Nutr. 15(02):253–57
- Food and Nutrition Board. 1968. Recommended Dietary Allowances: Seventh Edition. National Academy of Sciences-National Research Council
- Wong RSY, Radhakrishnan AK. 2012. Tocotrienol research: past into present. Nutr. Rev. 70(9):483–90
- Jolliffe N. 1941. Treatment of neuropsychiatric disorders with vitamins. JAMA. 117(18):1496–1502
- Soper HW. 1953. Clinical notes. The American Journal of Digestive Diseases. 20(8):227–28
- Lutz KB. 1963. Protest against persecution of the health movement by the food and drug administration
- Byers T, Perry G. 1992. Dietary carotenes, vitamin c, and vitamin e as protective antioxidants in human cancers. Annu. Rev. Nutr. 12:139–59
- Mayne ST. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 10(7):690–701
- Knekt P, Reunanen A, Järvinen R, et al. 1994. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am. J. Epidemiol. 139(12):1180–89
- Steinbrecher UP, Parthasarathy S, Leake DS, et al. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. U. S. A. 81(12):3883–87
- Boscoboinik D, Szewczyk A, Hensey C, et al. 1991. Inhibition of cell proliferation by alpha-tocopherol. role of protein kinase c. J. Biol. Chem. 266(10):6188–94
- Steiner M, Anastasi J. 1976. Vitamin e. an inhibitor of the platelet release reaction. J. Clin. Invest. 57(3):732–37
- Krinsky NI. 1993. Actions of carotenoids in biological systems. Annu. Rev. Nutr. 13:561–87
- The effect of vitamin e and beta carotene on the incidence of lung cancer and other cancers in male smokers. 1994. N. Engl. J. Med. 330(15):1029–35
- Omenn GS, Goodman GE, Thornquist MD, et al. 1996. Effects of a combination of beta carotene and vitamin a on lung cancer and cardiovascular disease. N. Engl. J. Med. 334(18):1150–55
- Slatore CG, Littman AJ, Au DH, et al. 2008. Long-term use of supplemental multivitamins, vitamin c, vitamin e, and folate does not reduce the risk of lung cancer. Am. J. Respir. Crit. Care Med. 177(5):524–30
- Klein EA, Thompson IM Jr, Tangen CM, et al. 2011. Vitamin e and the risk of prostate cancer: the selenium and vitamin e cancer prevention trial (select). JAMA. 306(14):1549–56
- Stephens NG, Parsons A, Schofield PM, et al. 1996. Randomised controlled trial of vitamin e in patients with coronary disease: cambridge heart antioxidant study (chaos). Lancet. 347(9004):781–86
- Lonn E, Bosch J, Yusuf S, et al. 2005. Effects of long-term vitamin e supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 293(11):1338–47
- Sesso HD, Buring JE, Christen WG, et al. 2008. Vitamins e and c in the prevention of cardiovascular disease in men: the physicians’ health study ii randomized controlled trial. JAMA. 300(18):2123–33
- Martínez ME, Jacobs ET, Baron JA, et al. 2012. Dietary supplements and cancer prevention: balancing potential benefits against proven harms. J. Natl. Cancer Inst. 104(10):732–39
- Jensen SK, Lauridsen C. 2007. Alpha-tocopherol stereoisomers. Vitam. Horm. 76:281–308
- Martinis J, Kessler F, Glauser G. 2011. A novel method for prenylquinone profiling in plant tissues by ultra-high pressure liquid chromatography-mass spectrometry. Plant Methods. 7(1):23
- Nowicka B, Kruk J. 2010. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta. 1797(9):1587–1605
- Mène-Saffrané L, Jones AD, DellaPenna D. 2010. Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 107(41):17815–20
- Ping BTY, May CY. 2000. Practical guide to establishing palm carotenoids profiles by hplc with three dimensional diode array detector. Palm Oil Developments, pp. 13–17
- Cromwell M, Weaver K. 2013. Litigation risks and exposures: “all natural” claims
- Han NM, May CY. 2012. Chromatographic analyses of tocopherols and tocotrienols in palm oil. J. Chromatogr. Sci. 50(3):283–86
- Trujillo-Quijano J, Rodriguez-Amaya DB, Esteves W, et al. 1990. Carotenoid composition and vitamin a values of oils from four brazilian palm fruits. Fett – Lipid. 92(6):222–26
- Narisawa T, Fukaura Y, Hasebe M, et al. 1996. Inhibitory effects of natural carotenoids, alpha-carotene, beta-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats. Cancer Lett. 107(1):137–42
- Someya K, Totsuka Y, Murakoshi M, et al. 1994. The effect of natural carotenoid (palm fruit carotene) intake on skin lipid peroxidation in hairless mice. J. Nutr. Sci. Vitaminol. 40(4):303–14
- Someya K, Totsuka Y, Murakoshi M, et al. 1994. The antioxidant effect of palm fruit carotene on skin lipid peroxidation in guinea pigs as estimated by chemiluminescence-hplc method. J. Nutr. Sci. Vitaminol. 40(4):315–24
- Murthy KNC, Rajesha J, Swamy MM, et al. 2005. Comparative evaluation of hepatoprotective activity of carotenoids of microalgae. J. Med. Food. 8(4):523–28
- Rink C, Christoforidis G, Khanna S, et al. 2011. Tocotrienol vitamin e protects against preclinical canine ischemic stroke by inducing arteriogenesis. J. Cereb. Blood Flow Metab. 31(11):2218–30
- Khanna S, Roy S, Slivka A, et al. 2005. Neuroprotective properties of the natural vitamin e alpha-tocotrienol. Stroke. 36(10):2258–64
- Sen CK, Khanna S, Roy S, et al. 2000. Molecular basis of vitamin e action. tocotrienol potently inhibits glutamate-induced pp60(c-src) kinase activation and death of ht4 neuronal cells. J. Biol. Chem. 275(17):13049–55
- Kamat JP, Devasagayam TP. 1995. Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci. Lett. 195(3):179–82
- Khanna S, Parinandi NL, Kotha SR, et al. 2010. Nanomolar vitamin e alpha-tocotrienol inhibits glutamate-induced activation of phospholipase a2 and causes neuroprotection. J. Neurochem. 112(5):1249–60
- Nesaretnam K, Koon TH, Selvaduray KR, et al. 2008. Modulation of cell growth and apoptosis response in human prostate cancer cells supplemented with tocotrienols. Eur. J. Lipid Sci. Technol. 110(1):23–31
- Srivastava JK, Gupta S. 2006. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem. Biophys. Res. Commun. 346(2):447–53
- Nesaretnam K, Dorasamy S, Darbre PD. 2000. Tocotrienols inhibit growth of zr-75-1 breast cancer cells. Int. J. Food Sci. Nutr. 51 Suppl:S95–103
- Nesaretnam K, Guthrie N, Chambers AF, et al. 1995. Effect of tocotrienols on the growth of a human breast cancer cell line in culture. Lipids. 30(12):1139–43
- Nesaretnam K, Stephen R, Dils R, et al. 1998. Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids. 33(5):461–69
- Yu W, Jia L, Park S-K, et al. 2009. Anticancer actions of natural and synthetic vitamin e forms: rrr-alpha-tocopherol blocks the anticancer actions of gamma-tocopherol. Mol. Nutr. Food Res. 53(12):1573–81
- Adachi H, Ishii N. 2000. Effects of tocotrienols on life span and protein carbonylation in caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 55(6):B280–5
- Hennekens CH, Buring JE, Manson JE, et al. 1996. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 334(18):1145–49
- Green A, Williams G, Neale R, et al. 1999. Daily sunscreen application and beta-carotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 354(9180):723–29
- Lee IM, Cook NR, Manson JE, et al. 1999. Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the women’s health study. J. Natl. Cancer Inst. 91(24):2102–6
- Greenberg ER, Baron JA, Stukel TA, et al. 1990. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. N. Engl. J. Med. 323(12):789–95
- Satia JA, Littman A, Slatore CG, et al. 2009. Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the vitamins and lifestyle (vital) study. Am. J. Epidemiol. 169(7):815–28
- Gallicchio L, Boyd K, Matanoski G, et al. 2008. Carotenoids and the risk of developing lung cancer: a systematic review. Am. J. Clin. Nutr. 88(2):372–83
- Stähelin HB, Gey KF, Eichholzer M, et al. 1991. Plasma antioxidant vitamins and subsequent cancer mortality in the 12-year follow-up of the prospective basel study. Am. J. Epidemiol. 133(8):766–75
- Michaud DS, Feskanich D, Rimm EB, et al. 2000. Intake of specific carotenoids and risk of lung cancer in 2 prospective us cohorts. Am. J. Clin. Nutr. 72(4):990–97
- Eliassen AH, Hendrickson SJ, Brinton LA, et al. 2012. Circulating carotenoids and risk of breast cancer: pooled analysis of eight prospective studies. J. Natl. Cancer Inst. 104(24):1905–16
- Greenberg ER, Baron JA, Karagas MR, et al. 1996. Mortality associated with low plasma concentration of beta carotene and the effect of oral supplementation. JAMA. 275(9):699–703
- Yuan J-M, Ross RK, Gao Y-T, et al. 2004. Prediagnostic levels of serum micronutrients in relation to risk of gastric cancer in Shanghai, China. Cancer Epidemiol. Biomarkers Prev. 13(11 Pt 1):1772–80
- Gey KF, Stähelin HB, Eichholzer M. 1993. Poor plasma status of carotene and vitamin c is associated with higher mortality from ischemic heart disease and stroke: basel prospective study. Clin. Investig. 71(1):3–6
- D’Odorico A, Martines D, Kiechl S, et al. 2000. High plasma levels of alpha- and beta-carotene are associated with a lower risk of atherosclerosis: results from the bruneck study. Atherosclerosis. 153(1):231–39
- Sahyoun NR, Jacques PF, Russell RM. 1996. Carotenoids, vitamins c and e, and mortality in an elderly population. Am. J. Epidemiol. 144(5):501–11
- Yusuf S, Dagenais G, Pogue J, et al. 2000. Vitamin e supplementation and cardiovascular events in high-risk patients. the heart outcomes prevention evaluation study investigators. N. Engl. J. Med. 342(3):154–60
- Salonen JT, Nyyssönen K, Salonen R, et al. 2000. Antioxidant supplementation in atherosclerosis prevention (asap) study: a randomized trial of the effect of vitamins e and c on 3-year progression of carotid atherosclerosis. J. Intern. Med. 248(5):377–86
- Lai GY, Weinstein SJ, Taylor PR, et al. 2014. Effects of α-tocopherol and β-carotene supplementation on liver cancer incidence and chronic liver disease mortality in the atbc study. Br. J. Cancer. 111(12):2220–23
- Petersen RC, Thomas RG, Grundman M, et al. 2005. Vitamin e and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352(23):2379–88
- GISSI-Prevenzione Investigators. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin e after myocardial infarction: results of the gissi-prevenzione trial. gruppo italiano per lo studio della sopravvivenza nell’infarto miocardico. Lancet. 354(9177):447–55
- De Gaetano G, Collaborative Group of the Primary Prevention Project. 2001. Low-dose aspirin and vitamin e in people at cardiovascular risk: a randomised trial in general practice. collaborative group of the primary prevention project. Lancet. 357(9250):89–95
- Gaziano JM, Glynn RJ, Christen WG, et al. 2009. Vitamins e and c in the prevention of prostate and total cancer in men: the physicians’ health study ii randomized controlled trial. JAMA. 301(1):52–62
- Kushi LH, Folsom AR, Prineas RJ, et al. 1996. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N. Engl. J. Med. 334(18):1156–62
- Lee I-M, Cook NR, Gaziano JM, et al. 2005. Vitamin e in the primary prevention of cardiovascular disease and cancer: the women’s health study: a randomized controlled trial. JAMA. 294(1):56–65
- Lippman SM, Klein EA, Goodman PJ, et al. 2009. Effect of selenium and vitamin e on risk of prostate cancer and other cancers: the selenium and vitamin e cancer prevention trial (select). JAMA. 301(1):39–51
- Eidelman RS, Hollar D, Hebert PR, et al. 2004. Randomized trials of vitamin e in the treatment and prevention of cardiovascular disease. Arch. Intern. Med. 164(14):1552–56
- Miller ER 3rd, Pastor-Barriuso R, Dalal D, et al. 2005. Meta-analysis: high-dosage vitamin e supplementation may increase all-cause mortality. Ann. Intern. Med. 142(1):37–46
- Boaz M, Smetana S, Weinstein T, et al. 2000. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (space): randomised placebo-controlled trial. Lancet. 356(9237):1213–18
- Nesaretnam K, Selvaduray KR, Abdul Razak G, et al. 2010. Effectiveness of tocotrienol-rich fraction combined with tamoxifen in the management of women with early breast cancer: a pilot clinical trial. Breast Cancer Res. 12(5):R81
- Gopalan Y, Shuaib IL, Magosso E, et al. 2014. Clinical investigation of the protective effects of palm vitamin e tocotrienols on brain white matter. Stroke. 45(5):1422–28
- Heng EC, Karsani SA, Abdul Rahman M, et al. 2013. Supplementation with tocotrienol-rich fraction alters the plasma levels of apolipoprotein a-i precursor, apolipoprotein e precursor, and c-reactive protein precursor from young and old individuals. Eur. J. Nutr. 52(7):1811–20
- Chin S-F, Ibahim J, Makpol S, et al. 2011. Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: a randomized controlled study. Nutr. Metab. 8(1):42
- Rasool AHG, Rahman ARA, Yuen KH, et al. 2008. Arterial compliance and vitamin e blood levels with a self emulsifying preparation of tocotrienol rich vitamin e. Arch. Pharm. Res. 31(9):1212–17
- Tomeo AC, Geller M, Watkins TR, et al. 1995. Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids. 30(12):1179–83
- Patel V, Rink C, Gordillo GM, et al. 2012. Oral tocotrienols are transported to human tissues and delay the progression of the model for end-stage liver disease score in patients. J. Nutr. 142(3):513–19
- Arguillas M. 2013. The effect of vitamin e (mixed tocotrienol) on the liver stiffness measurement measured by transient elastography (fibroscan) among nafld patients. APAS Liver Week. Singapore:
- Magosso E, Ansari MA, Gopalan Y, et al. 2013. Tocotrienols for normalisation of hepatic echogenic response in nonalcoholic fatty liver: a randomised placebo-controlled clinical trial. Nutr. J. 12(1):166
- Gee PT. 2011. Unleashing the untold and misunderstood observations on vitamin e. Genes Nutr. 6(1):5–16
- Stahl W, Junghans A, de Boer B, et al. 1998. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 427(2):305–8
- Thomas SR, Neuzil J, Mohr D, et al. 1995. Coantioxidants make alpha-tocopherol an efficient antioxidant for low-density lipoprotein. Am. J. Clin. Nutr. 62(6 Suppl):1357S–1364S
- Palozza P. 2005. Can β-carotene regulate cell growth by a redox mechanism? an answer from cultured cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 1740(2):215–21
- Devasagayam TPA, Tilak JC, Boloor KK, et al. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India. 52:794–804
- Collins AR, Azqueta A, Langie SAS. 2012. Effects of micronutrients on dna repair. Eur. J. Nutr. 51(3):261–79
- Stidley CA, Picchi MA, Leng S, et al. 2010. Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res. 70(2):568–74
- Gerson C. 2002. Healing Lung Cancer and Respiratory Disease the Gerson Way. Gerson Health Media
- Gerson M, Gerson C. 1958. A Cancer Therapy: Results of Fifty Cases ; And, the Cure of Advanced Cancer by Diet Therapy : a Summary of 30 Years of Clinical Experimentation. Gerson Institute
- Gerson C, Shwed J, Kroschel S. 2011. Healing the Gerson Way (with DVD): Defeating Cancer and Other Chronic Diseases. Gerson Health Media
- USDA. 2013. Usda national nutrient database for standard reference
- Thomas SR, Neuzil J, Stocker R. 1996. Cosupplementation with coenzyme q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of ldl to transition metal-dependent oxidation initiation. Arterioscler. Thromb. Vasc. Biol. 16(5):687–96
- Brown KM, Morrice PC, Duthie GG. 1997. Erythrocyte vitamin e and plasma ascorbate concentrations in relation to erythrocyte peroxidation in smokers and nonsmokers: dose response to vitamin e supplementation. Am. J. Clin. Nutr. 65(2):496–502
- Lee R, Margaritis M, Channon KM, et al. 2012. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr. Med. Chem. 19(16):2504–20
- Molavi B, Mehta JL. 2004. Oxidative stress in cardiovascular disease: molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr. Opin. Cardiol. 19(5):488–93
- White WS, Stacewicz-Sapuntzakis M, Erdman JW Jr, et al. 1994. Pharmacokinetics of beta-carotene and canthaxanthin after ingestion of individual and combined doses by human subjects. J. Am. Coll. Nutr. 13(6):665–71
- Handelman GJ, Machlin LJ, Fitch K, et al. 1985. Oral alpha-tocopherol supplements decrease plasma gamma-tocopherol levels in humans. J. Nutr. 115(6):807–13
- Kostic D, White WS, Olson JA. 1995. Intestinal absorption, serum clearance, and interactions between lutein and a-carotene when administered to human adults in separate or combined oral doses. Am J Clin NuIr. 62:604–10
- Landes N, Pfluger P, Kluth D, et al. 2003. Vitamin e activates gene expression via the pregnane x receptor. Biochem. Pharmacol. 65(2):269–73
- Prince MR, Frisoli JK. 1993. Beta-carotene accumulation in serum and skin. Am. J. Clin. Nutr. 57(2):175–81
- Micozzi MS, Brown ED, Edwards BK, et al. 1992. Plasma carotenoid response to chronic intake of selected foods and beta-carotene supplements in men. Am. J. Clin. Nutr. 55(6):1120–25
- Xu MJ, Plezia PM, Alberts DS, et al. 1992. Reduction in plasma or skin alpha-tocopherol concentration with long-term oral administration of beta-carotene in humans and mice. J. Natl. Cancer Inst. 84(20):1559–65
- Food and Nutrition Board. 2002. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press
- Federal Register | Food Labeling: Revision of the Nutrition and Supplement Facts Labels.
- CDC. 2012. Second national report on biochemical indicators of diet and nutrition in the U.S. population. National Center for Environmental Health
- Donaldson MS. 2011. A carotenoid health index based on plasma carotenoids and health outcomes. Nutrients. 3(12):1003–22
- Li C, Ford ES, Zhao G, et al. 2011. Serum α-carotene concentrations and risk of death among us adults: the third national health and nutrition examination survey follow-up study. Arch. Intern. Med. 171(6):507–15
- Min K-B, Min J-Y. 2014. Serum carotenoid levels and risk of lung cancer death in us adults. Cancer Sci. 105(6):736–43
- Nagata C, Shimizu H, Yoshikawa H, et al. 1999. Serum carotenoids and vitamins and risk of cervical dysplasia from a case-control study in Japan. Br. J. Cancer. 81(7):1234–37
- Shardell MD, Alley DE, Hicks GE, et al. 2011. Low-serum carotenoid concentrations and carotenoid interactions predict mortality in us adults: the third national health and nutrition examination survey. Nutr. Res. 31(3):178–89
- Mustad VA, Smith CA, Ruey PP, et al. 2002. Supplementation with 3 compositionally different tocotrienol supplements does not improve cardiovascular disease risk factors in men and women with hypercholesterolemia. Am. J. Clin. Nutr. 76(6):1237–43
- Qureshi AA, Qureshi N, Wright JJ, et al. 1991. Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am. J. Clin. Nutr. 53(4 Suppl):1021S–1026S
- Ong ASH, Niki E, Packer L. 1995. Tocopherols and tocotrienols in key foods in the us diet. In Nutrition, Lipids, Health, and Disease, ed ASH Ong, E Niki, L Packer. AOCS Press
- Heinonen M, Piironen V. 1991. The tocopherol, tocotrienol, and vitamin e content of the average finnish diet. Int. J. Vitam. Nutr. Res. 61(1):27–32
- Sookwong P, Nakagawa K, Yamaguchi Y, et al. 2010. Tocotrienol distribution in foods: estimation of daily tocotrienol intake of japanese population. J. Agric. Food Chem. 58(6):3350–55
- Nowicka B, Gruszka J, Kruk J. 2013. Function of plastochromanol and other biological prenyllipids in the inhibition of lipid peroxidation—a comparative study in model systems. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1828(2):233–40
- Mukai K, Itoh S, Morimoto H. 1992. Stopped-flow kinetic study of vitamin e regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin k, and tocopherolquinone) in solution. J. Biol. Chem. 267(31):22277–81
- Buettner GR. 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300(2):535–43
- Itoh S, Nagaoka S-I, Mukai K. 2008. Kinetic study of the tocopherol regeneration reaction by biological hydroquinones in micellar solution. J. Phys. Chem. A. 112(3):448–56
- Podda M, Weber C, Traber MG, et al. 1996. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J. Lipid Res. 37(4):893–901
- Nafeeza MI, Kang TT. 2005. Synergistic effects of tocopherol, tocotrienol, and ubiquinone in indomethacin-induced experimental gastric lesions. Int. J. Vitam. Nutr. Res. 75(2):149–55
- Bentinger M, Brismar K, Dallner G. 2007. The antioxidant role of coenzyme q. Mitochondrion. 7 Suppl:S41–50
- Ben-Amotz A, Levy Y. 1996. Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. Am. J. Clin. Nutr. 63(5):729–34
- Levin G, Mokady S. 1994. Antioxidant activity of 9-cis compared to all-trans beta-carotene in vitro. Free Radic. Biol. Med. 17(1):77–82
- Gaziano JM, Hatta A, Flynn M, et al. 1995. Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein oxidation. Atherosclerosis. 112(2):187–95
- Mobarhan S, Bowen P, Andersen B, et al. 1990. Effects of beta-carotene repletion on beta-carotene absorption, lipid peroxidation, and neutrophil superoxide formation in young men. Nutr. Cancer. 14(3-4):195–206
- Palozza P. 1998. Prooxidant actions of carotenoids in biologic systems. Nutr. Rev. 56(9):257–65
- Stocker R, Bowry VW, Frei B. 1991. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc. Natl. Acad. Sci. U. S. A. 88(5):1646–50
- Garden of Life. The Vitamin Code
- Liu RH. 2013. Dietary bioactive compounds and their health implications. J. Food Sci. 78 Suppl 1:A18–25
- Tiwari BK, Brunton NP, Brennan C. 2013. Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction. Wiley
- Watanabe F. 2007. Vitamin b12 sources and bioavailability. Exp. Biol. Med. 232(10):1266–74
- Walther B, Karl JP, Booth SL, et al. 2013. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin k requirements. Adv. Nutr. 4(4):463–73
Excellent Article Eric, and it’ts good to hear from you.
Thanks Mr. Potratz. Appreciate everything you have done.
– Loyal customer since 2009
Thank you for the kind words gentlemen.
I was an extremely satisfied customer of primordial performance. Specially the old topical sustain alpha plus many other products. Your service was always perfect and the quality of the products top notch.
I am extremely interested in the palm fruit supplement. I’ll use it for as long as I can because the long term benefits are amazing. I have been deeply studying and researching naturopathic medicine in my personal time for the last 6 months at least, so I am very familiar with everything you talk about in your blog. But I wasn’t completely aware about the differences between synthetic, natural and plant derived vitamins that you perfectly expose.
I wish you the best, and I can’t wait to see a new line of supplements from you guys. You’re a great American and Primordial was a great American company!
I am currently taking Life’s Greens from Puritan’s Pride, along with my Palm Fruit, fish oil, and sometimes other performance supplements (creatine, prohormones, etc.). I believe I should possibly be taking a higher quality multivitamin product, but I’m not sure about the 2 you recommend. Can 1 or 2 pills replace the 9+ grams I can get from a powdered product. Are there any powders you recommend?
I am a bigger guy, at 6’1″ 220lbs. I workout hard, and stay at or below 12% body fat. I believe I need a large dose of quality nutrients. I’m no longer an athlete, at 38, but I work as a firefighter, and stay fit.
I would also be interested in what your thoughts are about currently available performance supplements. I was a fan of Primordial products, but now that they’re gone, and all the other similar products, I’m back to creatine, and trying random products that I don’t see much fun.
Thanks for any help,
Neil,
The multivitamin supplements I recommend in the article beat the vitamins and minerals found in the Puritan’s Pride Life’s Greens® (serving per serving). The Life’s Greens® contains a fairly limited scope of vitamins and minerals, and the ones it does contain appear to be from synthetic/isolated vitamins (e.g., beta-carotene, iron sulfate). The vegetables and herbs in the product are great, but the label doesn’t give any indication of standardized potency, concentration of extract, or vitamins that are provided from the actual plant-based sources. So, we don’t really know the quality of these vegetable foods. Are they ground whole? 1:1 extract? The problem with alot of these “greens” powders is that they don’t utilize low temperature and low oxygen processing, so you essentially get a cooked and dried vegetable powder that is highly oxidized and inferior to actual fresh plant food. (e.g., over 50% of the vitamin C and other antioxidants are lost to oxidation)
Overall, I haven’t been very impressed with the all-in-one vitamin + greens + probiotics products. If you want probiotics the most well balanced and well priced product I’ve seen is Swanson’s Signature Line Ultimate Probiotics Formula. The vitamins and greens should come from the products I recommend in this article and dietary intake of minimally cooked fresh fruits and vegetables.
Thank you for some insight to deciphering the vitamin market. I am at sixty, and finding getting a square uptake of nutrients challenging. For the most part, my ingestion of mostly natural/organic non cooked foods are highest on my list. I do read labels often, so understanding the mix of information is at times hard. Have tried some different blends of protein powders but never stick to any. I prefer the all natural mix of staying healthy. I do my best to stay active, but as age develops further, the stresses of our bodies changes. As we do not use as many calories per activity anymore, the need to be more productive and streamlined in our use of food intake is ever more challenging. With that said, what can a less active adult be doing to minimise free radicals and still maintain a healthier natural state of being?
Michael,
The ideal amount of free radical stress is generally referred to as hormesis, and produces the maximum life-expectancy. You can achieve this state by exposing yourself to uncomfortable temperatures (cold/hot) for short periods of time (e.g., 20 minutes), light exercising multiple times per day (walking, tennis, etc), and temporary fasting 12-16 hours several times per month.
Dietary wise, the type of diet associated with the longest life-expectancy utilize foods that minimize blood glucose and insulin (< 50 g glycemic carbs per day). This should come from plant- and animal-based foods in a raw or mildly cooked state. Home fermented fruits and vegetables are also key for obtaining healthy probiotics (microflora) and B vitamins that are difficult to get from the “normal” diet. (You may enjoy the book “The Art of Fermentation”) Overall its desirable to produce short spikes in free radical stress, and to avoid the noxious long-term release of free radicals that are created by a sedentary lifestyle and the highly processed high glycemic foods. I hope this helps.
What about fish oils? Do you think they are good/safe as a supplement?
Hey Kstbts,
For my fish oil I generally just try to take a few servings of sashimi each week as this is one of the freshest sources of fish oil. Alot of the fish oil manufacturers struggle to maintain the “freshness” of their marine oils. Its very difficult to keep the fish oils away from oxygen along the supply chain. I think Nordic Naturals puts out a decent product. Ideally it’s best to find a provider that can show 3rd party lab analyses of peroxide value of <0.9 meq/kg, <0.4% free fatty acid, <2.7 carbonyl value, and perhaps most importantly a Totox value of <20 Meq/kg. This excludes most of the cheap fish oil softgels found in plastic bottles. Most plastic is permeable to oxygen and thus these products are more likely to be rancid.
Okay, thanks. I’m taking a “cheap” softgel in a plastic jar, and I have had my concerns about the quality. I think I will find an alternative.
That’s why Naturopathic doctors even advise to avoid olive oil or any oil due to oxidation which puts into your body just more free radicals. Unless you can find reliable sources of freshness.
Eric, what do you think about this multivitamin? Expensive, but at least looks like an available alternative. I’m currently using mykind organic and enjoying my palm fruit
Alex, what multivitamin are you asking about?
I’m sorry forgot the link lol
http://www.texassuperfood.com/texas-superfood-select-capsules/
The Texas Superfood product looks better than alot of multivitamins, but most of the vitamins in the product are still synthetic/isolated as you can see by the listing of S. cerevisiae — again meaning they’ve taken isolated vitamins and have incubated them with bakers yeast which is really not the same as plant-extracted.
Your words are wisdom. Thanks god the comments Eric. Bring back the sustain alpha!
What do you think of MSM supplements and bioflavonoids. I’m planning two switch to your recommendations. I’m currently taking a multivitamin, OPCs, MSM, and fish oil.
I think proanthocyanidins in general are a good supplement choice as they are usually a broad-spectrum extract from plants — which tends to show more favorable outcomes in clinical research. I haven’t investigated the brand name products on the market so I can’t really make any specific recommendations. I would just make sure you are buying a product that is standardized for a certain amount of OPCs.
I tend to be less excited about individual compounds such as MSM and would instead recommend either whole plant foods or plant-based extracts.
Hi Eric
What’s your opinion on Green Tea products? Would it go well with with Palm Fruit?
Thanks
Steve
Hey Steve,
Yes, green tea is a great source of polyphenol type antioxidants that will work well with the fat soluble antioxidants in Palm Fruit. I actually prefer the mental clarity I get from drinking green tea, as opposed to the high-potency EGCG extracts. But you may achieve better fat loss effects from the higher potency EGCG extracts.
Thanks for the reply Eric.
Are Green Tea Capsules effective or is loose tea a better option?
Can you recommend which brand please?
Many thanks
Steve
Sorry Eric ignore that you have already answered my question!
Can you recommend a loose tea brand though?
thanks
Steve
Steve,
Starwest Botanicals has excellent quality bulk herbs, and a range of organic loose leaf green tea options. Gunpowder green tends to be very high caffeine while some of the others will be lower caffeine. Just choose based on your personal preference.
Thanks Eric
Thanks Eric. My
Thanks Eric. I tried Palm Fruit today, and it was delicious and gave me a boost that I noticed right away. I’m excited to have it to add to my diet. In regards to the whole food supplement recommendations you gave, I noticed they are low in calcium, magnesium, and zinc. I don’t drink milk or processed “milks”, and so I need a good way to supply my needs in for calcium. I was wondering which you think would be better for my calcium: taking one of the whole food (algae based) calcium supplements in pill form (such as myKind brand), or drinking lots of nettle tea. I’ve heard that drinking about a quart of nettle tea made with 1oz leaves infused overnight supplies about 1000 mg of calcium, but I have no real proof of this.
Hey Kstbts,
Rhubarb is also a great source of calcium, and most leafy green vegetables are also a good source. In general I think the need for calcium is overstated by the dairy/food industry to increase appeal of certain foods. Magnesium and zinc (and 60+ other minerals) are found in high levels in any whole animal food or organ meat (e.g., mussels, oysters, sardines, liver, etc). 4-5 servings per day of vegetables and several servings per week of any of these animal foods will more than satisfy mineral requirements.
I didn’t know that about rhubarb (It’s not commonly eaten around here), but I did know about greens. However, it is really hard to get 1000 mg of calcium from greens. I know because I used to eat a pound of greens a day and I usually fell short. I have heard before that the USDA’s recommendation for calcium is inflated, and that 500 mg is a more reasonable number. Have you seen any research that would support that? I knew about greens, but I started drinking nettle tea because it is much cheaper. I can get a pound of organic leaves for about $10, and if the claims are true, then I have my calcium for about 63 cents a day.
Hey Kstbts,
Overall the research I have seen on calcium has been very underwhelming, but I haven’t taken a look at the research in several years. Are you concerned about bone health? As you may be aware there is little to no benefit of increasing calcium intake for preventing bone fractures. Lifting heavy weights, and getting sunlight a couple times per week appear to be the real protectors of bone health. Also, I believe the majority of benefits you get from greens, nettles, etc., are not coming from the calcium, but from the 60+ other minerals, hundreds of phytonutrients, fiber, etc., they provide.
You are so right. Thanks.
As a follow up, I had forgot to mention that sardines (w/ bones) are an incredible source of calcium. A small can of sardines in water contains about 40% DV of calcium — higher than a serving of milk..
Hey Eric,
Thanks for the great post! I am in the process of opening a new compound pharmacy and looking to provide top of the line vitamin and supplements. There is so much information out there regarding vitamin and supplements. One company has patented absorption technology, another best plant based process, etc…
My question is if you where starting a retail (pharmacy or otherwise) store which products would you sell to your customers. What company or multiple companies would you partner with? Would you offer a few all encompassing products or would you offer products that are one or two ingredient focus? So much to choose from.
Thanks for your input!
Hey Robert,
If I was to open a retail shop it would look like a mashup between a farmers market / whole herb shoppe / supplement store.
My overall approach is to avoid single isolated compounds (e.g., amino acids, minerals, antioxidants, vitamins, etc) which pretty much excludes 95% of the dietary supplements on the market. I recommend nutrients in the broadest spectrum possible closest to the whole-food state. For amino acids I recommend proteins. For minerals I recommend all 60+ trace elements from “earth” or animal based sources. For vitamins I recommend plant based extracts that have hundreds of vitamers. Same for antioxidants, polyphenols, etc.
Capturing the broadest range of nutrients actually requires far fewer products than taking single isolated nutrients. So the short answer is that I would recommend fewer products, rather than many products. And many of my recommendations would actually include whole foods.
To really put together a comprehensive list of products and brands would take several weeks of work. I’d be glad to discuss a possible consultation agreement if you like. You can reach me at eric@botanicalcraft.com.
Just did a show with Eric Fiorillo on Motivation & Muscle; 4:00 minute point – Here I discuss the problem with “natural” vitamin E and the key importance of broad-spectrum plant-based vitamin E — Great addition to this article: http://motivationandmuscle.com/podcast/eric-potratz-the-goodbad-and-ugly-of-vitamins-246/
Great great info Eric.
Cuts through all the noise, really where the rubber meets the road. Really enjoying this article and the great questions. In regards to supplements, I like to really do some due diligence on a company’s manufacturing procedures and ingredients. At moment I am liking the work of Bob Marshalls QNlabs down in Texas. I would enjoy getting your viewpoint on this company and their supplement line in general. I tend to use these guys a lot.
Also in regards to the company MegaFoods which really resonates with me but maybe I am a little uneducated on this. They seem to grow large batches of nutritional yeast (Nutritional yeast, non-Candida yeast.) and then feed it key trace minerals like zinc etc. This Nutritional yeast (Saccharomyces cerevisiae) is supposedly actually good for you and used in a lot of baking and winemaking etc. However I do not believe this, as it is not as close to as nature intended.
I would again really enjoy your perspective on this and also in regards to taking Trace Minerals by themselves. Like zinc, magnesium etc. For example you have companies like Trace Minerals Research which give you recommend daily dosages in a concentrated format.
Keep up the good work mate !
Damian
Hey Damian,
I took a quick look at a few Qnlabs products. It looks like they don’t use synthetic/isolated vitamins in their products which is a good sign. If there is something specific you want me to check out LMK.
MegaFoods vitamins are synthetic/isolated incubated with bakers yeast, so I do not recommend them. Baker’s yeast is fine by itself. The problem is that the Megafood vitamins are isolated, and not like the broad-spectrum vitamins you find in plants. The baker’s yeast is used to call them “whole-food based” which is highly misleading.
Trace Mineral Research does have some great full-spectrum mineral products. Its one of my favorite supplements for mineral supplementation because it includes all of the major and trace minerals. I just use pink Himalayan salt in all my home cooking now so I don’t supplement with extra minerals anymore — but if someone was highly depleted in trace minerals (from getting salt only in the form of sodium chloride) I would recommend this mineral supplement for a few months.
Hi Eric
I’m looking at purchasing a greens product as I don’t particularly like eating vegetables so this would be the best solution for me.
What do you think of them?
Would you mind looking at this product for me (warrior Greens) http://www.bodybuildingwarehouse.co.uk/catalogsearch/result/?q=greens
I have purchased this and I hope it will benefit me.
Many thanks
Steve
Steve,
That looks like a standard greens product, which really cannot provide the full benefit of fresh plant-based foods going straight into your mouth. My issue with greens products is the degree of processing and oxygen exposure these products are exposed to. These products aren’t concentrated for any particular constituents, so the low concentration of antioxidants are mostly lost before you even get the product in your hands. If these products were being processed in an oxygen free environment, dried at low temperatures, and packed in nitrogen filled glass containers then I would have a lot more confidence in them.
I suppose you can 1) try to find an organic product that meets these standards, 2) juice fresh fruits and vegetables, or 3) find some way to prepare fresh vegetables that make them edible for you.
I would recommend a greens product if I knew of one that met all these standards but I haven’t found one — but also haven’t searched very hard.
Should have got your advise before I purchased it!
Thanks Eric
Steve,
I’m not saying its a completely worthless product. There should still be some fiber, phenols, alkaloids, organosulfur compounds, etc. that will offer some health benefit. I just don’t want people to think dried powder greens are the same as fresh/raw greens from the produce section.
I used to buy Macrogreens they’ve been around for years they claim that one serving surpasses your daily 5 portion of fruit and vegetables, to good to be true!!
thanks again
Eric,
To begin with, thank you for your answer.
Yes that actually makes a lot of sense. In regards to the company QNlabs, I was looking at there Max Stress B (a complete B mineral) . I was also finding it a little challenging to get a top quality supplement with all the B minerals .I was also looking Qnlabs DHA omega-3 and a zinc supplement. I know zinc can come in many different formats to take. However in your previous answer you already stated your top company for individual mineral deficiencies.
I have been looking around in different countries for the most powerful nutrient omega-3 fish oil. I seen you mentioning Nordic Naturals who seem to be okay in a previous answer . I am not worried about price, I just wanted to scout out the best. I came across a couple of companies (1)Pacific rim (2) Green Pasture – a Fermented fish oil (3) Rosita Extra Virgin Norwegian Cod Liver Oil. Have you come across any of these manufactures in your studies.
In connection also with Superfood powders which is becoming more popular by the week. I was totally unaware that the products aren’t concentrated for any particular constituents, so the low concentration of antioxidants are mostly lost. I do try and take the best quality manufactures in organic Chlorella- Spirulina- Maca and the main grasses. I try and avoid anything that comes from China due to a lot of heavy metal toxicity.
At the moment the best companies I have come across is over at QNlabs and Synergy Natural. I would love to get your opinion again of the way these companies are manufacturing and processing these powders in keeping the nutrients at the highest potency.
I also just checked out your Red Palm oil. Looks very interesting. I never used it. I might also go for some shipments of this. Do you ship to European countries.? How has the feedback been with this product and how does it compare to all the other quote Superfoods.
I might also arrange some consultations when I’m back in town in a few weeks for more indept info.
Cheers mate,
Damian
Hey Damian,
I can’t tell if the Max Stress B vitamin complex is an incubation of synthetic B vitamins with probiotics, or if its actual B vitamins generated from probiotic synthesis — its probably the former. For B vitamins I generally recommend sardines, oysters, mussels and home fermented foods (8+ weeks of fermentation will produce B vitamins).
I was interested in the fermented product several years ago because of the potential benefits of omega-3s, cod liver, etc., but that fact that it is “fermented” implies that it has degraded. The oil likely contains very actual omega-3s triglycerides and very high amounts of peroxidized fats, free fatty acids, 4-HNE, F4-isoprostanes, MDA, etc — so it would probably be highly inflammatory and irritating to the body. There hasn’t been a lot of research on degraded/rancid fats in humans, so it is hard to say what the long-term effects may be, but I would venture to say it would not be positive effects considering the toxic effect seen in animals from peroxidized fats.
Rosita Extra Virgin Norwegian Cod Liver Oil looks like a great product based on the manufacturer’s website, although I haven’t seen any 3rd party analyses on it to verify the almost unbelievably low TOTOX value. If money is no obstacle it looks like a good product, but the Nordic Naturals brand looks like a more affordable alternative.
The fact that Synergy Natural is organic is a good sign, and puts it a step above a lot of other generic green products — although I don’t see anything specific about their manufacturing process.
Regarding our Palm Fruit product, it contains the highest dose of tocotrienols and carotenoids of any product on the market, and these are the phytonutrients people tend to be most deficient in (especially tocotrienols). The product fills a common gap in the diet. Unlike most superfood products there is actual human clinical trials (over 24) supporting the benefits for hair growth, UV skin protection, and cardiovascular health. We ship internationally now for a flat $5.00 USD.
Hi there Eric,
Nice to see some actual science behind product selection. Great article, thank you.
Just a quick question, you mention that that its ideally best not to see Saccharomyces cerevisiae listed within the nutritional label yet on one of the products you recommend it is used to obtain b12. Also the other product lists folic acid as a component of Folate, which is something i had hoped to avoid in an ideal world. Should i be concerned about either or have i misunderstood the context of each of these?
Would love to have your expert opinion on this.
Hey Ian,
Thanks for the comment.
I would not be concerned about the S. cerevisiae in this particular case as all of the other vitamins in this product are derived from natural origins and not exposed to synthetic/chemical modifications as implied by the specific reference to their plant origin. As for B12, as far as I know, the only way this is being produced commercially is through bacterial and/or fungal fermentation (actually assembly of the vitamers by microbes) — so its origin will likely always be of microbial origin. It just so happens that wild fermented foods (4+ weeks) are also a great source of B12 and most other B vitamins.
As for the folic acid, again because the plant origin is specifically referenced the folic acid is likely intrinsic to the plants themselves — in addition to other folates. You also might see alpha-tocopherol mentioned, but because it is specifically from a plant source, then it will be intrinsic to the plant and also present with other naturally occurring tocols. Remember, plant-based = mixed vitamers.
I hope this helps.
Hi Eric,
Thank you for taking the time to respond. Very useful.
I have reread your article a few time now, its great stuff. I have signed up for the Palm fruit. I am excited.
I have also ordered the vitamins you have recommended. I realise that not all ‘natural’ supplements are created equal and after reviewing your article a lot of the others i have come across are sub par. Having said that i did come across one other company that did interest me greatly. I was wondering if you had time to just quickly cast your professional eye over this company and specifically their multi-vitamin for men. http://www.thesynergycompany.com/vmh-men
Browsing around their site, it seems very promising.
Many thanks
Ian
Hey Ian,
Thanks again for the comments.
Yes that synergy product does look like a true plant-based vitamin. It does look like a lot of their products are using plant-based extracts and avoiding the synthetic materials. Good to see!
Whats your take on IntraMax?
I’m a bit weary since there is a huge list of ingredients in the Intramax (150+?). Technically they would need to validate each ingredient in the product by a 3rd party lab analysis, which would make the product prohibitively expensive. So I have a hard time trusting that the product actually contains what it says and if the product is actually being tested the way it should be. However it does appear to contain plant-based vitamins.
Hello!!!
I would like to ask if Iherb.com stocks any whole real food based vitamins?
Thanks 🙂
The MyKind Organics are the best available plant-based multivitamins, and they are available on iherb.
Hi Eric
I have been using Garden of life Vitamin Code but was advised against using this product by a nutritionist because some of the vitamins are well above the RDA and can interfere with the absorption of other vitamins. What are your thoughts on this?
Is it safe to use this product long term?
Thanks
Steve
Hey Steve,
The Vitamin Code is a synthetic vitamin mixture that’s been cultured. I don’t recommend the Vitamin Code product, but I do recommend the Garden of Life MyKind Organics variety of multivitamins.
The Vitamin Code does have higher levels of several B-vitamins. This may contribute to acne, but otherwise the levels of vitamins in this product are not considered a health concern. The problem is that it is a synthetic blend that lacks the plant-based spectrum of vitamers — which is a health concern as discussed in this article.
As far as absorption inhibition/competition between vitamins, I wouldn’t worry too much about it. This is a common phenomenon that occurs with many nutrients and its still possible to obtain the benefit of these nutrients despite this effect.
Hi Eric. I’m a little confused the product is labled as a RAW Whole food multivitamin?
Comparing it with Mykind Organics I can’t see the difference between the two.
http://m.iherb.com/Garden-of-Life-Vitamin-Code-Men-240-Veggie-Caps/22350
Steve,
Its a very subtle difference in the Supplement Facts as the article explains.
Look here – http://www.gardenoflife.com/Portals/11/PropertyAgent/6384/Files/103/VC%20Mens%20120ct%20Supp%20Facts.png
The give away is the Vitamin A listed “(as beta-carotene)”. The listing of a single compound like this implies it is synthetic/isolated because it does not explicitly list the food source of that beta-carotene. I confirmed this from email correspondence with Garden of Life last year. It’s likely that most, if not all, of the vitamins in Vitamin Code are of synthetic origin. The “RAW Food-Created nutrients” line is just marketing jargon for synthetic vitamins that have been fermented (cultivated) with strains of yeast or bacteria.
May thanks Eric for the explanation.
I have taken 800 IU every day of natural Vitamin E since the mid-1970’s (1974 or 1975). I buy the Nature Made brand well over 90% of the time. I decided t.o order on Amazon and received Plant Sourced instead of Natural. I Googled for a comparison and found your outstanding article. Thanks.
Wow! What an article! This is seriously impressive and as a nutritional therapist, I am very grateful for your delivery of this information. THANK YOU!
Thanks Donna! Glad you enjoyed it!
Hi Eric!
Can you check out and give your informed opinion on Sanopoly’s Priosa VIT? My fiancee’s brother-in-law in Germany recommended it and I like the plant-based claims, but want to be sure before I take it.
US Link: https://www.amazon.com/dp/B06XZ1QGZY
German Link: https://www.amazon.de/Pflanzenextrake-Vitalstoffe-Stoffwechselprozesse-Leistungsf%C3%A4higkeit-Sanopoly-Garantie/dp/B01LDQLIH8/
What’s your take on this supplement, if any?
Hey Jim,
Sorry for the delay, the notifications for us wasn’t working for some reason.
In regards to the product “Priosa” it certainly looks like a collection of different plant-based extracts, but none of them appear to be standardized for any % of vitamin content. The only vitamin I see referenced is “beta-carotene” from an unidentified source, which tells me its synthetic.
Thank you so much , Eric , it is a great job you’ve done: I do respect your
approach , I trust your experience .
I am happy to share in exchange free Buteyko Method exercise ,
if you are interested .And – welcome to New Zealand , I would show
you around.
excellent points altogether, you simply won a brand new reader.What could you recommend in regards to your put up that you simply made afew days in the past? Any certain?
I have noticed you don’t monetize botanicalcraft.com, don’t waste your traffic,
you can earn additional bucks every month with new monetization method.
This is the best adsense alternative for any type of website
(they approve all websites), for more details simply search in gooogle: murgrabia’s tools
Thank you for this indepth explanation. Great also to have the references. Its incredible that we have known this for such a long time.